Pembahasan soal Fungsi Invers
PEMBAHASAN SOAL FUNGSI INVERS
Berikut ini adalah pembahasan soal-soal matematika tentang fungsi
invers. Pembahasan soal ini bisa dijadikan bahan belajar mandiri dalam
menghadapi ulangan harian, UTS, UAS, UKK, Ujian sekolah, Ujian Nasional
dan ujian lainnya. Langsung saja dibawah ini adalah pembahasan soal
tentang fungsi invers.
Nomor 1
Jika f(x) = 2x - 6 maka f-1(x) = ...
A. 1/2 x - 3
B. 1/2 x + 3
C. -1/2x - 3
D. -1/2x + 3
E. x - 12
Pembahasan
Untuk menentukan fungsi invers, kita tinggal menentukan persamaan x-nya.
f(x) = 2x - 6
2x = f(x) + 6
x = f(x) + 6 / 2 (ganti x dengan f-1(x) dan f(x) diganti dengan x)
f-1(x) = (x + 6) / 2 = 1/2 x + 3
Jawaban: B
Nomor 2
Jika f(x) = 5 - 1/3x maka f-1(x) = ...
A. 3x + 15
B. 3x - 15
C. -3x + 15
D. -3x - 15
E. -3x + 5/3
Pembahasan
f(x) = 5 - 1/3x
1/3x = 5 - f(x)
x = (5 - f(x)) . 3
x = 15 - 3 f(x)
f-1(x) = -3x + 15
Jawaban: C
Nomor 3
Jika f(x) = (x + 3) / (x - 2) maka f-1(x) = ...
A. (2x + 3) / (x - 1)
B. (x - 3) / (x + 2)
C. (2x + 3) / (x + 1)
D. (-2x + 3) / (x + 1)
E. (-x + 3) / (x - 2)
Pembahasan
Cara 1
Misalkan f(x) = y
y = (x + 3) / (x - 2)
y (x - 2) = x + 3
yx - 2y = x + 3
yx - x = 2y + 3
x (y - 1) = 2y + 3
x = (2y + 3) / (y - 1) ganti x dengan f-1(x) dan y dengan x maka
f-1(x) = (2x + 3) / (x - 1)
Cara 2
Jika f(x) = (ax + b) / (cx + d) maka f-1(x) = (-dx + b) / (cx - a))
Jadi tinggal tukar tempat dan ganti tanda 1 dengan -2.
f-1(x) = (2x + 3) / (x - 1)
Nomor 4
Jika f(x) = 2x / (x - 1) maka f-1(1) = ...
A. -1
B. 0
C. 1
D. 2
E. 3
Pembahasan
Tentukan terlebih dahulu f-1(x)
y = 2x / (x - 1)
y (x - 1) = 2x
yx - y = 2x
yx - 2x = y
x (y - 2) = y
x = y / (y - 2)
f-1(x) = x / (x - 2)
f-1(1) = 1 / (1 - 2) = - 1
Jawaban: A
Nomor 5 (UN 2014)
Fungsi invers didefinisikan sebagai f(x) = (x - 3) / (2x + 5), x ≠ - 5/2 dan f-1(x) adalah invers dari fungsi f(x). Rumus dari f-1(x) adalah...
A. (5x + 3) / (1 - 2x)
B. (5x - 3) / (1 - 2x)
C. (5x + 3) / (2x + 1)
D. (2x + 3) / (5x + 5)
E. (2x - 3) / (5x + 5)
Pembahasan
f(x) = (x - 3) / (2x + 5) berarti a = 1, b = -3, c = 2 dan d = 5 maka:
f-1(x) = (-dx + b) / (cx - a))
f-1(x) = (-5x - 3) / (2x -1) atau pembilang dan penyebut dikali - (min)
f-1(x) = (5x + 3) / (-2x + 1)
f-1(x) = (5x + 3) / (1 - 2x)
Jawaban: A
Nomor 6 (UN 2014)
Diketahui f(x) = (5x - 5) / (x - 5), invers fungsi f(x) adalah f-1(x) = ...
A. (x - 5) / (5x - 5)
B. (x + 5) / (5x - 5)
C. (5x - 1) / (5x - 5)
D. (5x - 5) / (x - 5)
E. (5x - 5) / (x + 5)
Pembahasan
f(x) = (5x - 5) / (x - 5) berarti a = 5, b = -5, c = 1 dan d = -5 maka
f-1(x) = (-dx + b) / (cx - a)
f-1(x) = (5x - 5) / (x - 5)
Jawaban: D
Nomor 7
Jika f(x) = x3 - 8 maka f-1(x) = ...
A. 3√(x - 8)
B. 3√(x + 8)
C. 3√x + 8
D. 8 - 3√x
E. 3√x - 8
Pembahasan
f(x) = x3 - 8
x3 = f(x) + 8
x = 3√(f(x) + 8) ganti x dengan f-1(x) dan f(x) dengan x
f-1(x) = 3√(x + 8)
Jawaban: B
Nomor 8
Jika f(x) = 3log (x - 2) maka f-1(x) = ...
A. 3x + 2
B. 3x - 2
C. 2 . 3x
D. 3x + 2
E. 3x - 2
Pembahasan
Pembahasan
Jawaban: A
Nomor 5 (UN 2014)
Fungsi invers didefinisikan sebagai f(x) = (x - 3) / (2x + 5), x ≠ - 5/2 dan f-1(x) adalah invers dari fungsi f(x). Rumus dari f-1(x) adalah...
A. (5x + 3) / (1 - 2x)
B. (5x - 3) / (1 - 2x)
C. (5x + 3) / (2x + 1)
D. (2x + 3) / (5x + 5)
E. (2x - 3) / (5x + 5)
Pembahasan
f(x) = (x - 3) / (2x + 5) berarti a = 1, b = -3, c = 2 dan d = 5 maka:
f-1(x) = (-dx + b) / (cx - a))
f-1(x) = (-5x - 3) / (2x -1) atau pembilang dan penyebut dikali - (min)
f-1(x) = (5x + 3) / (-2x + 1)
f-1(x) = (5x + 3) / (1 - 2x)
Jawaban: A
Nomor 6 (UN 2014)
Diketahui f(x) = (5x - 5) / (x - 5), invers fungsi f(x) adalah f-1(x) = ...
A. (x - 5) / (5x - 5)
B. (x + 5) / (5x - 5)
C. (5x - 1) / (5x - 5)
D. (5x - 5) / (x - 5)
E. (5x - 5) / (x + 5)
Pembahasan
f(x) = (5x - 5) / (x - 5) berarti a = 5, b = -5, c = 1 dan d = -5 maka
f-1(x) = (-dx + b) / (cx - a)
f-1(x) = (5x - 5) / (x - 5)
Jawaban: D
Nomor 7
Jika f(x) = x3 - 8 maka f-1(x) = ...
A. 3√(x - 8)
B. 3√(x + 8)
C. 3√x + 8
D. 8 - 3√x
E. 3√x - 8
Pembahasan
f(x) = x3 - 8
x3 = f(x) + 8
x = 3√(f(x) + 8) ganti x dengan f-1(x) dan f(x) dengan x
f-1(x) = 3√(x + 8)
Jawaban: B
Nomor 8
Jika f(x) = 3log (x - 2) maka f-1(x) = ...
A. 3x + 2
B. 3x - 2
C. 2 . 3x
D. 3x + 2
E. 3x - 2
y = 3log (x - 2)
x - 2 = 3y
x = 3y + 2 ( ganti x dengan f-1(x) dan y dengan x)
f-1(x) = 3x + 2
Jawaban: A
Nomor 9
Jika f(x) = 2 + 3log x, maka f-1(x) = ...
A. 3x + 2
B. 3x - 2
C. 2 . 3x
D. 3x + 2
E. 3x - 2
B. 3x - 2
C. 2 . 3x
D. 3x + 2
E. 3x - 2
y = 2 + 3log x
3log x = y - 2
x = 3y - 2
f-1(x) = 3x - 2
Jawaban: B
Nomor 10
Jika f(x) = 32x - 1 maka f-1(x) = ...
A. 1/2 3log x - 1/2
B. 1/2 3log x + 1/2
C. 1/2 3log x - 1
D. 1/2 3log x + 1
E. 2 3log x - 1
Pembahasan
y = 32x - 1
log y = log 32x - 1
log y = 2x - 1 log 3
2x - 1 = log y / log 3
2x - 1 = 3log y
2x = 3log y + 1
x = 1/2 3log y + 1/2
f-1(x) = 1/2 3log x + 1/2
Jawaban: B
No comments:
Post a Comment